
www.manaraa.com

Exploring sensor data management

Sander Evers

December 22, 2006



www.manaraa.com

Abstract

The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired
and wireless networks has led to the prediction that ‘smart evironments’ will emerge in the near
future. The sensors in these environments collect detailed information about the situation people
are in, which is used to enhance information-processing applications that are present on their
mobile and ‘ambient’ devices.

Bridging the gap between sensor data and application information poses new requirements to
data management. This report discusses what these requirements are and documents ongoing
research that explores ways of thinking about data management suited to these new requirements:
a more sophisticated control flow model, data models that incorporate time, and ways to deal with
the uncertainty in sensor data.



www.manaraa.com

Introduction

The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired
and wireless networks has led to the prediction that ‘smart evironments’ will emerge in the near
future. The sensors in these environments collect detailed information about the situation people
are in, which is used to enhance information-processing applications that are present on their
mobile and ‘ambient’ devices.

Bridging the gap between sensor data and application information poses new requirements to
data management. This report discusses what these requirements are (chapter 1) and documents
ongoing research that explores ways of thinking about data management suited to these new
requirements.

In chapter 2, it is argued that a more sophisticated control flow is needed that goes beyond
simple push or pull models. Chapter 3 presents several ways of incorporating time in data models,
and serves as a prerequisite for chapters 4, 5 and 6. These document some attempts to put research
from temporal databases, data stream management, and, to a small extent, event languages (for
active databases) in one framework.

The following chapters explore ways of dealing with the uncertainty that arises with sensor
data. In chapter 7, we have modelled a simple sensor-based scenario both by using a custom rule-
based approach and a statistical approach, which allows us to make a crude qualitative analysis
of their usefulness. Chapter 8 is a technical treatise on combining specific sensor models for the
same situation.

Note to the reader: All chapters originate from separate small reports, and have not been written
to form a combined narrative.

Acknowledgement: This research is funded by NWO (Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek; Netherlands Organisation for Scientific Research), under project 639.022.403.

1



www.manaraa.com

Chapter 1

Requirements for sensor data
management

1.1 Introduction

The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired
and wireless networks has led to the prediction that ‘smart evironments’ will emerge in the near
future. Often these systems will be monitoring conditions in the real world: weather, temperature,
road traffic, location of objects, prices on the stock market. In some cases, a regular update (where
‘regular’ could range from milliseconds to hours) about these conditions is produced; in others,
the system gives notifications when special changes occur.

These environments pose new requirements to data management. In contrast with the tra-
ditional office setting, most data will be produced by sensors, at distributed locations, and will
be consumed by applications which are mobile and not always connected. There will be a large
shift in the ratio between input and output, and there will be more demand for live data. New
processing tasks will include situation classification and analysis.

In the next sections, we characterize the data supply and demand sides, and the data manage-
ment tasks that should mediate between them.

1.2 Supply side: sensors

The supply side of a smart environment consists of a myriad of sensors that produce data at
possibly very high rates. The use of sensors for inserting data into the system has several con-
sequences. The values will not exactly correspond to the real world due to measurement system
errors, noise, and uncontrolled conditions. The distributed, wireless and battery-powered nature
of sensor networks will force data management to take sensor failure, network latency and loss
into account. At the other hand, there will be a lot of redundant (or, in statistical terms, highly
correlated) data to counter these negative features. A couple of remarks to sketch the situation:

• Sensors come and sensors go. They can fail because their battery runs out, and start up again
when it is replaced. They can be disconnected, moved and connected at a different place.
They can be replaced altogether by a newer model. They can have wireless connections
which do not work all the time.

• Sensors do not produce clean data. Averages have to be taken, noise filters have to be
applied, environmental influences (e.g. echos) have to be accounted for.

• The same sensor may be used for different purposes. Different algorithms are applied on
the raw data depending on what you want to know, e.g. using a microphone for speaker
identification, speaker positioning or estimation of the environmental noise level.

2



www.manaraa.com

• The data rate and latency may differ greatly between sensors/algorithms, and over time.
In some cases, it may be parameterizable (i.e. a sensor or algorithm can be configured to
produce output at several rates). In some cases, the term “data rate” might not even apply
at all (e.g. RFID readers which produce a reading (or a burst of readings) whenever a tag is
detected).

• They might only produce data “on demand” because of the cost associated with it. This
cost may be power, but it may also be money if the sensor belongs to another party (think
of weather or traffic sensors).

1.3 Demand side: applications

Applications are typically uninterested in details about the sensing architecture and will need a
sufficiently high-level ‘world model’ to base their behavior on. When applications are connected,
they will probably be interested in high-resolution, live data; when they have been disconnected for
a while they might rather request a summary (e.g. properties like average, variation, frequencies).
Some other characteristics:

• Applications come and go. They can be turned on and off at will; they are duplicated for
each new user; they are upgraded. They are disconnected at one place and connected at
another, and might be interested in what happened in the meantime.

• They might want to know what kind of sensors are around, and adapt their information
demands to this.

• They might be totally decoupled from sensors, and just want to know e.g. which person is
at a certain desk.

• They might have (static or dynamic) requirements about the rate at which data is delivered
to them. This rate may vary greatly from application to application.

• They might demand a ‘memory’ from the environment to discover details of specific events
in the past.

• They might be interested in trends or summaries rather than in specifics.

1.4 New tasks for data management

Sensor stream management is responsible for matching demand and supply in a flexible, robust
and scalable way. It has several aspects in common with conventional data management; as major
differences we see the nature of processing tasks (probably making use of statistical methods) and
the more demanding temporal requirements. These are discussed in the following sections.

1.4.1 Nature of processing

Much more than in office applications, data in smart environments exhibits an asymmetry between
the supply and demand sides. Firstly, at any time, the amount of data put into the system is
vastly larger than the amount extracted from it. Secondly, the input is sensor hardware dependent
while the output is at the abstraction level meaningful to the applications. The question is what
kind of (continuous) ‘queries’ can describe the mapping from input to output.

There are approaches that use a ‘declarative’, SQL-like specification over sliding windows, e.g.
to get from raw RFID data to a model of the location of objects[10]. In this case, the processing is
divided into several stages: filtering individual readings, smoothing readings from a single sensor
over time, merging data from several (redundant) sensors, arbitrating in conflicts (e.g. the same
object is detected in two locations), and virtualising (a sort of abstraction from the physical

3



www.manaraa.com

details). All the processing stages are defined using aggregates over sliding windows, in an SQL
variant that supports this.

However, we feel that in this application, the semantic gap between sensor data and output
is actually not that big. An example of sensor data processing where this gap is larger is [11], in
which data from several sensors (audio, acceleration, light intensity, skin conductivity, humidity)
is used to classify a person’s activity. This approach uses an architecture with feature extractors,
fuzzy sets and a naive Bayes classifier (and plans for a Markov chain on top of that); this task
better represents the direction our work is aimed at.

In general, we will try to explore the approach where this mapping between input and output
is a statistical one. The point of focus should be not on isolated classification tasks, but rather
on ways to combine small tasks into bigger tasks. A general problem with combining statistical
models is that the variables of one model are correlated to the variables of the other, and one has
to specify this relation in order to get to an adequate joint statistical model. In the most general
models, this will yield a nonlinear increase in parameters, e.g. combining n models requires n2

extra parameters. On the other hand, there are also models which require no extra parameters at
all, like the naive Bayes classifier.

1.4.2 Temporal issues

A common requirement for data management systems is to provide decoupling between data
producers and data consumers; having few dependencies between producers and consumers eases
the replacement of components (so this is a flexibility requirement). Conventional aspects are data
format decoupling and identity (address) decoupling; a new requirement will be the decoupling of
data rate and quality. Chapter 2 explores a method for this decoupling.

In the ideal case, the system would allow queries to be formulated in terms that are orthogonal
to data rate and quality. Apart from the decoupling aspect observable from the outside, this would
also provide freedom within the system, e.g. allow it to make quality trade-offs based on available
resources.

A statistical approach might lend itself to this goal. The statistical model would relate contin-
uous (or very frequent) input variables to a continuous output variable. In an ideal situation with
unlimited resources, all the input observations can be taken into account, giving the best possible
approximation of the output variable. In practice, we have to deal with limited resources, and we
drop the observations that add the least value in better approximating the output (given earlier
observations of these variables, or observations of other variables). This kind of approach is taken
in [7], where the cost of doing the observations lies primarily in the energy consumption needed
to contact a wireless sensor node.

An interesting question is whether it pays off to apply this method to the resource network
bandwidth, i.e. is it worthwhile to use the current expected added value of a variable to do flow
control? Another question along these lines is if we can use this approach not to do earlier instead
of better approximation; this latency requirement is one which we expect to play a larger role,
because applications are interested in ‘live’ data. There might be tight bounds for absolute latency,
or for jitter (variance in latency), just like in streaming video or telephony applications. If we have
a statistical model for the dynamics of the input (or intermediate) variables, we might use it to
predict values which are late or missing, in order to meet these requirements.

4



www.manaraa.com

Chapter 2

Decoupling control flow

From the envisioned responsibilities of a data stream management system (DSMS), most have
a counterpart in the conventional setting. Interesting new requirements are the decoupling of
control flow, stream rate and stream accuracy. These concepts are tightly linked to each other
and can probably best be treated as one problem. To explain it, imagine a continuous information
processing chain between the observed world and a running application:

At the left, the world continuously “produces” information; at the right, applications are
receiving relevant information in an appropriate form. We first consider two simple data flow
models for this chain, between one sensor and one application:

Sensor push Every time the sensor produces a new reading, it is pushed into the first processing
stage, which does some processing, after which it pushes its result into the next stage, until
it reaches the application. Thus, all processing is initiated by the sensor. If the sensor
would fail, the application would be immediately affected because it does not receive data
anymore. If the sensor would be replaced by one that produces data at a ten-fold rate, the
application would receive data at a ten-fold rate (which it may be unable to handle). If the
sensor would produce data at a very slow rate, the application might time out and conclude
that the sensor does not work.

Application pull In this model, all data processing is initiated by the application, which asks
the rightmost process to hand over the next piece of information. This causes a chain
reaction of requests from right to left, at which point the current sensor reading is taken
and the information flows back from left to right like in the sensor push model. This way,
applications have control over when they receive data, but this comes at a price: (i) the data
is delayed, (ii) important events may have been missed while the sensor “was not looking”.

In both of these simple models, the stream rates are completely determined by one side of the
system. Not only can this overflow the application, but it can also overflow the processing system
itself. In the sensor push model, this happens when there are too many sensors, or sensor rate
becomes too high (the information supply is too big); in the application pull model, it happens
when the information demand is too big. In either case, there are no provisions prescribing how
to “keep up” (e.g. which data or request to drop).

Next, let’s consider an addition that solves some of the problems in a crude way. The processing
chain is cut in half; in between, there is a form of storage which functions as a buffer. The left half
of the chain follows the sensor push model: sensors push their data through the first processing
stage into the storage process. However, at that point the control flow stops. At the same time,

5



www.manaraa.com

the right half follows the application pull model: applications pull data at the right, but the chain
of requests going left also stops at the storage process. New data is fetched from storage and
pushed back to the right.

The storage process can function in two ways:

Sensor overwrite When new data arrives from the left, it simply overwrites the data currently
in storage. Thus, when data is pulled from the right, the puller always receives (only) the
most recent data. This makes sense when new data always makes the old data obsolete;
however, when applications are also interested in past data or want be triggered by events
in the data, this method throws away relevant data.

Application aggregate When new data arrives from the left, it is appended to the data in
storage. When it is pulled from the right, all the data in storage is aggregated in some
application-relevant way (e.g. an average or maximum is taken); the results are handed over
to the right, and the storage is emptied.

In both methods, the storage process functions as a protective buffer against overflow: data
from the left side will not overflow the right side, and requests from the right side will not overflow
the left side. The two sides are not “synchronized” anymore.

A drawback of this is that the system is not as deterministic anymore as it was before. The
exact same input causes different output when the push and pull rates have a different ratio
(because a different percentage of data is dropped in the sensor overwrite case, and aggregates
are taken over different sizes of data in the application aggregate case. In the conventional “office”
data management, where the existence of a single tuple can make a difference between black and
white in the query result, such non-determinism is unwanted; with sensor data this is far less
important.

Until now, two simple types of “buffers” were discussed in a very simple scenario, between one
sensor and one application. In a more realistic scenario, one could imagine a whole processing net-
work between multiple sensors and multiple applications, with several types of buffers at multiple
places. In addition to the two simple and very general buffers introduced above, a buffer can be
customized to the actual data stream it handles.

When more than one buffer is present on a path between sensor and application, an interesting
question occurs: how to determine when data is pushed from one buffer to another? I think that
here lies an important task for the DSMS: to observe the pull rate from the applications, and
match the data rate in between buffers accordingly, to ensure timely arrival of new data while not
overflowing the system.

Some examples of specialized buffers:

Sliding aggregate At every pull, emit an aggregate over the inputs of the last n seconds, or over
the last n inputs.

Dampening aggregate At every push, a weighted average of the previous output and the new
input is taken. At a pull, the last calculated value is emitted.

Generalized Schmitt trigger Also a kind of “smoothing” device. The input (e.g. integers be-
tween 0 and 100) is divided in several zones with “no man’s land” in between (e.g. 0–20,
25–40, 50–70, 80–100). The output indicates in which zone the last input was, ignoring the
no man’s land. This removes oscillations between two zones. An example of such an oscil-
lation: someone is lingering at a doorstep between two rooms. A system that should decide
in which room the person is would report that the person is frequently entering and exiting
the room. If the Schmitt trigger is applied, it would keep reporting the person’s previous
location until he has left the doorstep area.

6



www.manaraa.com

Extrapolate If there is no input for a while, and data is pulled, use the trend in the most recent
input to predict new values.

Random To match a push rate to a lower pull rate, just take random samples. (This might have
better statistical properties than taking an average.)

Time clustering Produce one output for groups of input that come close to each other in time.
To match input and output rates, change the requirements of what “close” is.

Evidence threshold Produce output only if several equivalent inputs (e.g. RFID readings) are
seen shortly after another.

Note: some of the mentioned buffers are more “adaptive” to lower pull rates than others. Some
(like the Schmitt trigger) just forget data, i.e. sensor overwrite. Another observation: some of
these buffers are targeted towards data volume/rate reduction, while others are about raising the
abstraction level, adding semantics to the data.

7



www.manaraa.com

Chapter 3

Modelling temporal information

To process information that describes dynamic situations on timescales ranging from milliseconds
to months, it seems inevitable, when modelling an observed situation, to couple primitive and
composite ‘facts’ to their times of occurrence. Sensor data management systems should support
this by offering standard representations for temporal information, and moreover, methods to
transform and compose it. For guidance on how to design these methods, we can draw from
previous research on temporal databases, sequence databases, and active databases; we will discuss
some approaches in the next chapter. In this chapter, we will introduce some basic concepts
to structure this discussion. We distinguish two more or less established models, namely an
event-based representation and state-based representation, and add a third: the signal -based
representation.

Events

An event usually models a somehow significant transition in the state of an observed phenomenon.
Events can be directly observed by sensors (RFID tag #296199 is read), derived from lower-level
sensor data (Elvis leaves the building) or generated by software (Harold starts up his chat client).
An event carries some data giving the specifics to distinguish between different events. When
considering multiple events, it is sometimes sufficient to assert only the order between them (for
example, by giving them a sequence number, or using lists as the primitive data type), but usually
they are also time stamped. In short: event = data + time stamp. Relative time stamps only tell
how much time there was in between the events of one stream or sequence; when absolute time
stamps are used, two arbitrary streams can be merged into a new one that still exhibits the correct
temporal order.

In the pure sense of this concept, events happen instantaneously; it is nonsense to talk about an
event occurring during another event (instead, it occurs between other events). Furthermore, it is
not very useful to be able to distinguish simultaneous events, because these only occur incidentally,
as a result of a too coarse timescale in our implementation. In practice, we can assume an arbitrary
order between events with the same timestamp, because when defining a timescale granularity,
what we actually do is assert that the order of two events within the same granule does not matter.

A problem with instantaneous events is that it useful composition of events is limited; while it
is no problem to define union or filter operations on a set of events, a sequence (or more general:
a join) is problematic because it is not clear how to define the result timestamp. These problems
can be solved by attaching a start and end timestamp instead of a single one, but this would
effectively turn it into a state.

States

In this approach, the basic building block of information is a state that lasts between a start time
and an end time; a state is a piece of data coupled to an interval. For example: the door has been

8



www.manaraa.com

open from 13:53 until 16:29. Again, in principle it makes little sense to do an equality test on
start or end timestamps of observed states, because they depend on the incidental implementation
granularity. Common tests on the interval of a state are whether it is completely contained within
another interval, and whether one of its endpoints lies within an interval.

A common way of combining two states is by appending the ‘data’ part and taking the intersec-
tion of the intervals; if this is the only way states can be combined, the temporal algebra is snapshot
reducible. This means that any temporal query can logically reformulated as a non-temporal query
applied to all the snapshots (timeslices) of the temporal information. This property makes it easy
to reason about queries, and to transfer established non-temporal data management techniques
into the temporal domain.

However, snapshot reducible operators are limited in expressivity. For example, one cannot do
aggregation over time; the effect of a state on the query result is limited to its own interval. This
gives reason to consider alternative methods of combining two or more states.

Signals

Both the event and state representations presuppose a conventional algebraic approach to data
processing. However, the nature of a lot of sensor data processing tasks seems at odds with
this approach. For example, it does not make sense to perform a Fourier transformation or
Hidden Markov Model filtering using a data algebra. One may argue that this kind of tasks
should be assigned to separate preprocessing systems, which feed their results into the “real” data
management system, but this gives the impression of conveniently defining away a big part of the
data processing. Therefore, we will try not to make this separation assumption, and investigate
what we can do with signals.

Our first definition of a signal is simply a mathematical function from a (continuous) time
domain to some data domain (usually also continuous or ordered). To be able to transform and
combine signals, this function has to be represented in some way, but we will not fix a representation
yet; any specific representation we would choose now would discard (possibly relevant) information.
For example, if we would take a sample each function at a fixed frequency, we can no longer
distinguish if a function has a component at this frequency (and if it does have a component with
a large amplitude, this will cause random shifts between representations with a different sample
phase). Some other ways of approximating a signal using a finite representation could be sampling
at a variable rate, or wavelet transformation. Because every representation drops (or: abstracts
from) certain information, it can be considered a part of modelling, and should be at the command
of the user.

An important issue when choosing a representation used for querying ‘live’ data is whether
this representation can be constructed on-the-fly, with a (fixed, crisply bounded, probabilistically
bounded) delay, or only when the whole signal has arrived.

Logical and physical operators

Like in conventional databases, we can make a distinction between a logical level dealing with
what has to be calculated and a physical level dealing with how it is calculated. When dealing
with live sensor data, it also becomes interesting to consider, at the physical level, when things
are calculated.

At the logical level, temporal data can be treated just like other data. This makes it possible
to define retroactive operators: these allow input tuples with a timestamp t to influence (the
data or occurence of) output tuples with a timestamp smaller than t. More common are proactive
operators, that allow input tuples to influence output tuples with a larger timestamp. An operator
that is neither retroactive nor proactive is (logically) stateless; output tuples can only be influenced
by input tuples with the same timestamp. An example is the temporal variant of the σ (select,
filter) operator: it keeps or drops a tuple based only on the information in the tuple itself.

On the physical level, input and output time refer to actual clock time, so retroactivity is not
possible. If a physical operator has to produce its output in the right logical order (as is often

9



www.manaraa.com

prescribed), the physical implementation of a retroactive operator will cause latency. In this case,
a tuple cannot be output (with an unchanged logical timestamp) if itself or any tuple before it
can still be affected by incoming tuples.

The definitions above apply to events (with one timestamp). It is not directly clear how to
apply them to states or signals. However, the concept of stateless logical operators resembles that
of snapshot reducible operators, in which an input state with timestamps (ts, te) can only influence
output states with timestamps (t′s, t′e) with ts ≤ t′s and t′e ≤ te. Snapshot reducibility is discussed
in chapters 4 and 5.

10



www.manaraa.com

Chapter 4

Correspondence between
streaming and temporal data
management

4.1 Introduction

There is an important correspondence between the data models from the temporal databases
research area[13] (active in the 1980s–90s) and from the streaming data management area[9] (early
2000s). The key to understanding this correspondence is to consider the ‘streaming’ nature of data
processing as a purely physical issue, and to view the streams in a static way on the logical level,
as a table of temporal tuples. A step in this direction is taken with the definition of the STREAM
query language CQL[3], and more prominently by Krämer and Seeger[12].

The streams from Aurora[1] and STREAM[2] then become sets of events: tuples with one
timestamp. In Aurora, streams are the primary data type; the diverse join-like operators all
need windows as a parameter to specify which tuples to take into consideration for joining. In
STREAM however, streams are a secondary data type; the greatest part of data processing is
performed on ‘relations’. Streams are converted to relations by a so-called ‘stream-to-relation’
operator; in logical terms, such an operator adds an end timestamp to the tuples, transforming
them into states. On the physical level, this is implemented by later putting an ‘expiration tuple’
with this timestamp on the stream. The join operators from this approach are windowless: they
remove tuples from their memory when they have received the corresponding expiration tuple.

An important consequence of this line of reasoning is that we can identify the time-varying
‘relations’ from STREAM with temporal relations, and see that STREAMs ‘relation-to-relation’
operators exactly correspond to snapshot reducible operators.1

Section 4.2 discusses these snapshot reducible operators in streaming systems from a logical
viewpoint, and highlights some important limitations. Section 4.3 takes a more physical viewpoint
and proposes a partial solution in the form of an operator.

4.2 Snapshot reducible stream processing

An important class of temporal operators consists of those that are snapshot reducible[8]. This
means that a snapshot of the result relation of the temporal operator opT at an arbitrary time t
can also be obtained by taking the snapshots of the input relations at time t and then applying a

1Viewed from one side, these are temporal operators that can be reduced to their conventional counterparts;
viewed from the other side, they are conventional operators that have been promoted or lifted to the temporal
domain.

11



www.manaraa.com

corresponding conventional operator opC to them:

snapshott(opT (r1, r2, . . .)) = opC(snapshott(r1), snapshott(r2), . . .)

If, as is often done, a tuple with an associated time (point, interval) is taken to represent the
validity of a fact at that time, a query built out of snapshot reducible operators has the property
that the validity of the result facts at time t only depends on the validity of the input facts at
time t.

Like we said, snapshot reducibility is exactly what characterizes a relation-to-relation operator
in STREAM: it is defined as conventional relational operators applied to all snapshots. Pursuing
this analogy, stream-to-relation operators transform a collection of data pieces associated with a
single point in time into a collection of (usually the same) data pieces associated with an interval.
The associated time can either be seen as valid time or as transaction time (time that a fact is
known to the database). For example, a sliding window of 30 seconds associates an interval of
[t, t + 30s] to a tuple arriving at time t; the Now window from STREAM produces degenerate
intervals [t, t]; landmark windows produce [t, n(t mod n)+1] intervals; and m-tuple windows uses
the timestamp of incoming tuple number x + m as the end timestamp of tuple x. At each point
in time, a continuous query has as its domain all the facts that have that current moment in their
interval; the facts whose intervals are in the past are forgotten.

A problem of this approach is that all interval sizes are statically determined in the query.
Presumably, in many realistic queries we also want to talk about intervals whose lengths depend on
data, e.g. the periods of time that a person is in a certain room. Consider the query “continuously,
produce the list of average sound levels for each (maximal, uninterrupted) interval that person
A was in room B”. This question is impossible to pose in STREAM, because the intervals are
varying in length.

Another reason why this query cannot be posed in a snapshot-reducing approach is that the
data is associated with the intervals themselves instead of with the points contained in them.
This often-ignored distinction is illustrated by Chomicki[6] using the example “I was driving from
Washington to New York from 2 to 7pm” versus “I drove from Washington to New York from 2
to 7 pm”. The former fact is implicitly associated with every time-point (or arbitrary subinterval)
of the 〈2, 7〉 interval; the latter fact is only about the interval with specific end points 2 and 7.
A second example is given by Böhlen[4]: a three-day interval is associated with the total amount
of rain which fell in that interval. This does not tell us much about the rain that fell during an
arbitrary sub-interval.

When we do allow true interval semantics in a query language, we have to be very careful as to
what kind of expressions are allowed, because it can lead to an explosion of resource consumption.
For example, assume we split up the above query into the parts:

1. detect maximal, uninterrupted intervals of person A being in room B

2. for each interval, record the average sound level in room B

These subqueries can be joined on the interval attribute to produce the goal query. However,
subquery 2, when run in isolation, will take up way too much resources because it will calculate
an average for every possible subinterval. (For 10 readings, this would be 10+9+8+ . . .+1 = 55
averages; in general, (n2 + n)/2).

4.3 Windowless Joins

Working with “windowless” join operators on streams (like in the STREAM system) is easier than
with join operators that maintain a sliding window on their input streams. In the windowless
join approach, the sliding windows are put only on the base streams; no extra windows need to
be defined on the internal streams. For example, in a stream processing tree (S1 ./ S2) ./ S3, a
window has to be defined for each base stream Si, but not for the result of S1 ./ S2. The greatest

12



www.manaraa.com

advantage is that the complex operator tree built in this way can be seen as a conventional
relational operator tree, and can be reasoned about in the same way: for example, S1 ./ (S2 ./ S3)
would be a logically equivalent tree (./ is associative).

Of course, the pipelined physical operator that implements the windowless join still must have
some method to keep track of which tuples to consider for combining an incoming tuple with (and
more importantly, which tuples not to consider anymore). In the implementation of STREAM,
this is accomplished by storing each incoming tuple on stream A in a “synopsis” for A. While
it remains there, it is combined with the incoming tuples from stream B and streamed out (if
the non-temporal join condition holds). When the tuple expires from a base stream window, an
expiration tuple is sent after it. When the physical join operator receives this tuple, it removes
the original tuple from the synopsis and also combines the expiration tuple with the tuples in the
other stream’s synopsis, producing new expiration tuples to stream out.

There exists an alternative solution[12], in which the base stream window operators produce a
single tuple, to which the time point at which it will expire is already attached. The join operator
will remove tuples from the synopses as soon as they are over their “expiry date”. A result tuple
that is streamed out from the operator will contain the earliest of the expiration timestamps from
the two tuples out of which it is built. This approach is implemented in a system called PIPES,
and will be referred to under that name.

The main advantage of the PIPES approach over the STREAM approach is that the former
will send half as much tuples over the pipelines. A disadvantage that I can think of is that the
expiration time has to be known at the time that the base stream window produces a tuple; this
is impossible, for example, when the window expires the tuple as soon as it detects a certain other
tuple on the stream (“person A is in a different room now”).

Windowless temporal aggregation

We now present a novel way of doing aggregation using a windowless join operator. Consider the
following setup: a stream R (“rapid”) has to be compressed into a lower volume stream by making
aggregate values. For example, every 5 minutes an average over the R values in the last 10 minutes
should be produced. However, the length and frequence of these aggregation intervals may change
over time, so it is not possible to use a fixed sliding window. Instead, a stream S (“slow”) dictates
which values to group together. In the example, there would be a tuple on stream S every 5
minutes, which would remain valid for some 10 minutes. All the incoming tuples on R combine
with all the currently valid tuples on S, and will take on the same expiration time. I propose a
temporal grouping join operator to do this, and will write it S ./tg R.

Note that this operator only “assigns tuples to groups” (where a tuple can be assigned to more
than one group) but does not do any aggregation yet. This should be done by some aggregation
operator which is applied to the result: TAVG(S ./tg R). Together, these two operators would be
quite similar to the Resample operator from the Aurora system, except that its window size is not
fixed. Issues that still have to be resolved w.r.t. the aggregation operator are:

• how does it know when to stop aggregating, in other words: when is it certain that a group
will not receive any new members?

• when should the produced aggregate values expire?

These questions can be considered under the STREAM approach as well under the PIPES ap-
proach.

13



www.manaraa.com

Chapter 5

Categorical account of snapshot
reducibility

5.1 Introduction

The conventional relational data model is a way of representing which facts are considered valid ;
the accompanying relational algebra is a way to describe, regardless of which facts are actually
valid, the sort of facts that we are interested in. The goal of temporal data models is to give a
temporal dimension to this notion of validity: one can express when a fact is valid.

A temporal data model defines what kind of temporal facts can be described, and how to
describe them. This is usually done by telling how to encode a collection of temporal facts as a
set. It defines the structure of sets that are allowed; in the temporal relational cases, this structure
consists of a schema and a table of tuples conforming to that schema. The operators in the algebra
rely on that structure: for any argument table(s) conforming to that structure, they can produce
a new table, again with this structure.

The question is: which structure is appropriate to represent temporal facts? A lot of different
structures have been defined: using tuple timestamping or attribute timestamping, point times-
tamps, interval timestamps or “temporal elements” (unions of intervals); adding conditions like
homogeneity, value uniqueness, etc. These structures can represent different classes of temporal
facts.

One important class consists of “atelic facts”[14], which can be queried using snapshot reducible
operators. To describe this data model and query language, a point-based representation suffices;
furthermore, a certain restriction on the algebra ensures that it can only represent snapshot
reducible operators.

5.2 Snapshot reducibility

A common way to look at a temporal database is by examining snapshots of it: which facts are
valid at moment t? Conceptually, if we combine the snapshots for all t ∈ T , we get a snapshot
representation of the complete database. Two temporal databases are called snapshot equivalent
if their snapshot representations are the same. Snapshot representation and snapshot equivalence
are defined likewise for single relations.

Related is snapshot reducibility for queries: a query on a temporal database is snapshot re-
ducible if its result can also be obtained by doing a conventional query on all the snapshots of
the database. In other words, the validity at time t of a fact in the query result only depends on
what facts are valid in the database at time t. Snapshot reducibility is defined likewise for single
operators.

We now formalize these notions. Consider a temporal relation r of temporal schema R. To be

14



www.manaraa.com

able to formally manipulate it, r has to be encoded as a set, which we will also call r. We also
consider the set of all possible relations of schema R, which we call TrepR (temporal representation
of R). So, r ∈ TrepR. To enable viewing temporal data as conventional data, a snapshot function
@t is defined along with the temporal data model. This function turns r (∈ TrepR) into a
conventional relation r@t of facts which are valid at t. This relation is belongs to CrepR, the set
of all conventional relations of schema R.

The reason that we name the sets TrepR and CrepR is that they function as the domains for
temporal and conventional operators, respectively. A temporal operator from R to S is a function
from TrepR to TrepS. For example, the operator RπS projects relations with temporal schema
R into relations of temporal schema S. (Normally, this operator would be called πS which only
indicates the target schema of the operator; we also include the source schema.) For simplicity,
we only consider unary operators for the moment. Likewise, a conventional operator from R to S
is a function from CrepR to CrepS.

Snapshot reducibility of temporal operator f ′ to conventional operator f means that

∀r ∈ TrepR, t ∈ T : f ′(r)@t = f(r@t)

We now transform this formula into more categorical terms. Instead of considering a differ-
ent function @t : TrepR → CrepR for each snapshot t, we consider the function @ : TrepR →
(T�CrepR) which transforms a temporal relation into its complete snapshot representation.

To apply a conventional operator f to every snapshot at once (map it over all the snapshots),
we have to lift it from type CrepR → CrepS to type (T�CrepR) → (T�CrepS). We define:

Liftf = (f◦) = λr. λt. f(r(t))

Now we can reformulate snapshot reducibility of f ′ to f :

@ # Liftf = f ′ #@
Later this will be formulated as a natural transformation.

5.3 Data model and algebra as a category

We represent a data model and its accompanying algebra together as a category. An object of this
category corresponds to a schema, or, equivalently, the set of all possible relation tables conforming
to that schema. An arrow corresponds to an operator (actually, an instance of an operator for a
certain source and target schema). We only consider unary operators for now.

This category is a concrete category, which means that there is a mapping from all objects
to sets (like mentioned before: each object is mapped to the set of all relations conforming to
the schema), and there is an injective mapping from operators to set functions. This is nothing
unexpected; usually operators are defined as set functions. However, we have now made a clear
distinction between the data model category and the category of sets; while all schemas and
operators can be represented as sets and set functions, not all sets represent a schema, and not
all set functions (even stronger: not all set functions between schema representations) represent
an operator. For the temporal model and algebra, the functor embodying this representation
mapping is Trep; for the conventional model and algebra, it is Crep.

For each instantiation of a temporal database, it makes sense to define a snapshot represen-
tation. For every snapshot (defined by a point t of temporal domain T ), it tells you which facts
are valid at that time. Note that this already hints at atelic facts; for each point in time one
can tell whether they are valid or not. (For telic facts, this does not make sense.) This snapshot
representation of a database is also in the category Set, and, just like the temporal database itself,
it has some structure. For each schema CrepR, this structure is the set T → CrepR, where T is
the temporal domain again.

A database snapshot does not contain temporal information, so any conventional operator can
be used on a snapshot. For example, the snapshot r(t) taken at time t can be transformed into a

15



www.manaraa.com

snapshot s(t) by a conventional operator of type CrepR → CrepS. This new snapshot s(t) is also
valid at time t. We can also apply a conventional operator to all the snapshots t ∈ T at once.
This lifted operator is then of type (T�CrepR) → (T�CrepS).

To map a temporal database to its snapshot representation (which might contain less informa-
tion), we define for each schema X a function @X that maps a temporal relation of type TrepX
to its snapshot representation T → CrepX.

We can now define what it means for a temporal operator f : R → S to be snapshot reducible
to a conventional operator f ′ : R → S. It means that, in the category Set,

@R # Liftf ′ = Trepf #@S

We now give a possible instantiation of Trep. A temporal relation over schema R (we assume
it does not contain T yet) is represented by a relation with schema R ∪ {T}. So, every temporal
operator from R to S is represented by a set function encoding a conventional relational operator
from R ∪ T to S ∪ T . The function @X : TrepX → (T → CrepX) is given by

@X(x) = λt. XπX\{T}(σT=t(x))

The snapshot reducibility condition above then translates into

f ′ ◦ RπR\{T} ◦ σT=t = SπS\{T} ◦ σT=t ◦ f

So, for this particular definition of our temporal data model Trep, we have an exact definition
of how snapshot reducible operators relate to their conventional counterparts, without a “for all r”
clause. In future work, we hope to show that using this Trep we can express all possible snapshot
reducible operators, and give a characterization of the subset of Trep functions by which they are
represented.

16



www.manaraa.com

Chapter 6

Event algebra in CQL

6.1 Introduction

Research on active databases has produced several event languages and algebras for specifying
complex events. One particularly simple event algebra with a rigorous formal definition (which
most of these languages lack) is that of Carlson and Lisper[5]. These formal set semantics of an
event expression are easily translated to a CQL query (the query language of STREAM[2]), if we
can use a custom stream-to-relation operator. A problem with these naively produced queries is
that they will all unnecessarily consume unbounded memory; we explain why, and indicate some
steps to overcome this.

6.2 Straightforward translation of set semantics

Assume want to treat the input streams SE , SF , SG, . . . to the STREAM system as primitive
events E,F, G, . . .; i.e. the tuples on the SE stream are event instances of event type E. An input
stream is formally defined as a set of pairs 〈d, τ〉 consisting of a data part d (where all pieces of
data from a stream conform to the same schema) and a timestamp τ . To be able to turn such a
stream into an event with Carlson and Lisper’s interval semantics within the STREAM system, we
extend the CQL stream-to-relation operator [Rows ∞] with a PointInterval option, signifying
that the data part d of each tuple that is streamed into the relation is extended with a start and
end timestamp τ . Formally, this operator produces a relation with the following contents at time
tnow:

SE[Rows ∞, PointInterval] = {〈d, ts := τ, te := τ〉|〈d, τ〉 ∈ SE ∧ τ ≤ tnow}

Now, we define that the CQL semantics of a primitive event E is the (time-varying) relation
produced from stream SE with this operator:

JEK = SE[Rows ∞, PointInterval]

The CQL semantics of composite events can now be defined by induction. In fact, the set theoretic

17



www.manaraa.com

semantics can be straightforwardly translated to CQL:

JE ∪ F K = SELECT *
FROM JEK UNION JF K

JE + F K = SELECT min2(E.ts, F.ts) AS ts, max2(E.te, F.te) AS te, ...
FROM JEK E, JF K F

JE;F K = SELECT E.ts AS ts, F.te AS te
FROM JEK E, JF K F
WHERE E.te < F.ts

JET K = SELECT *
FROM JEK E
WHERE E.te - E.ts < T

6.3 Memory effect of translated expressions

In effect, to detect a composite event, we take the relations produced by infinite windows over all
the primitive event streams, and do a conventional relational query over it. But, as a consequence,
the implementation of this has the same memory requirements as just storing all the tuples in a
normal database: as soon as a sliding window relation participates in a join, all its tuples are kept
in memory because they have to be joined with all the tuples arriving later on the other stream.
So, we might just as well not use streaming data management at all!

On one hand, this negative conclusion was to be expected, because the unbounded growth of
memory is inherent in the basic semantics of the ; and + operators that Carlson and Lisper give—
they call this the unrestricted semantics. On the other hand, even for the event (E + F )30 sec,
the whole history of both streams would be kept, while only 30 seconds is needed.

One might wonder what happens if we try to define the restricted semantics of the operators
using CQL. One easy way to do this is to apply the restriction policy once, to the output stream
of a composite event: from the tuples with the same te, just filter away all except one with the
highest ts. While this (probably) gives the right semantics, we do not solve our memory problem,
because this filtering is done at the top level. It would probably take a very clever query optimizer
to drop unneeded tuples.

A step closer might be to apply the restriction policy as an extra WHERE clause at each operator.
It remains to be seen what optimization technique can really keep as few tuples as possible in
memory. The resulting query plan would probably be close to the detection algorithm that Carlson
and Lisper give themselves. This algorithm is not derived from their set semantics (only proven
to correspond to it), so the hope that a query optimizer can produce it right away is not so
big. . . (and in any case, it would have to make use of some domain specific knowledge, namely that
the timestamps of the primitive event arrive in order; and maybe that the relation update tuples
arrive in order of te).

6.4 Advantages from this formulation

While it has not produced any results in achieving efficiency yet, we have in any case shown a
clear link between the two approaches (event detection and relational querying of data streams).
It has also inspired the definition of some other event interval operators:

18



www.manaraa.com

JE ∩ F K = SELECT max2(E.ts, F.ts) AS ts, min2(E.te, F.te) AS te, ...
FROM JEK E, JF K F
WHERE ts < te

JE e F K = SELECT max2(E.ts, F.ts) AS te, min2(E.te, F.te) AS ts, ...
FROM JEK E, JF K F
WHERE ts < te

The first one takes produces all the temporal intersections of E and F events; the second one
(mind the reversal of ts and te in the SELECT clause) produces all the gaps between E and F
events.

We can also also introduce a useful new stream-to-relation operator:

SE[Rows 1, PersistInterval]

which would produce a relation which always contains 1 tuple. It replaces this tuple with a new
one with ts = tnow as soon as the d value at tnow differs from the previous one; if it’s the same
value, it would only update the te value of the tuple to tnow.

This would be useful to represent, for example, the interval that a person has stayed in the
same room, in the case that a sensor is streaming this room identifier at a fixed rate.

19



www.manaraa.com

Chapter 7

Rule-based vs. Markov chain
modelling

7.1 Introduction

Sensors generally do not provide us directly with the data we are looking for (to base our actions
on). This can be because this data is not physically measurable, measurements are influenced by
noise, measurements can not be taken at any arbitrary moment, the sensor can be failing or the
transmission of data is failing. To compensate for this, one takes into account multiple measure-
ments of the same phenomenon, e.g. from the same sensor at nearby times, from similar sensors
in the neighborhood, or from different sensors. The question is how to perform the aggregation of
several measurements into one “verdict” with the best reliability.

As a simple case study, we consider a room with a motion sensor, a microphone and a door
lock sensor. From the sensor inputs close to time t, we try to estimate whether a person is in the
room, in order to turn the light on or off. This can be thought of as a continuous query, giving
a binary output at all times. A second task to consider is to give, at the end of each day, the
estimate of how much time the room was occupied.

We first model the situation with a custom rule-based approach, and then using a (hidden)
Markov chain. We analyse the differences.

7.2 Rule-based model

We model the input of the system using events. The motion detector produces an event mot when
it detects significant motion (and keeps giving these events, say, every 5 seconds if the motion
continues). Likewise, the microphone gives (and repeats) an event mic when the volume goes
above a certain treshold. The door events are denoted lok (lock) and ulk (unlock).

Now, we specify what the output should be. We also model this with events: on to turn the
light on, and off to turn it off. We assume that the room has no windows, so the light should
always be on when there’s someone inside. After a ulk event, we can assume that someone enters
the room, so an on event is immediately produced. When the door is locked (lok), it should be
turned off. After a mot, the light should be (turned) on, and kept on for at least 5 minutes (unless
the door is locked during that time). The same goes for mic events. If no event takes place in
these 5 minutes, the light should be turned off.

To make this specification more operational, we proceed as follows. We divide it into rules
that fire when an input event is received:

20



www.manaraa.com

lok → [(0, off)]
ulk → [(0, on)]
mot → [(0, on), (300, off)]
mic → [(0, on), (300, off)]

Once a rule fires, a process starts to produce the output associated with that rule at the in-
dicated time offset (i.e. for a received mot event: an on output immediately, and an off output
after 300 seconds). We stipulate that a newly fired rule aborts the running process and re-
places it with its own. So, an input stream [(100, mot), (200, mot)] would cause an output stream
[(100, on), (200, on), (500, off)].

A small prototype of a stream processor that can execute these kind of rules has been pro-
grammed.

7.3 Markov model

We now model the situation using a Markov chain. This chain represents the evolving state of
the process under observation. It consists of a series of stochastic boolean variables INHt indexed
by time, representing whether the room is inhabited at moment t. The sensors are also modelled
by stochastic boolean variable series: MOTt, MICt and LOKt. (Note that we take the sensor’s
state at each moment, instead of irregularly produced events.) To specify how all the probability
distributions influence each other, we connect them in a Bayesian network like in Fig. 7.1 (the
door lock sensor is left out for the moment). The sensor variables are observed, but the Markov
chain can not, so this is a Hidden Markov Model. The parameters to this model are:

• The 2× 2 transition matrix T , specifying P(INHt+1 = j|INHt = i) where i and j range over
the state space {true, false}. Note that the transition probabilities do not depend on t.

• The 2 × 2 sensor matrix SMOT, specifying P(MOTt = j|INHt = i) where again i, j ∈
{true, false}.

• Idem for SMIC.

We specify that the light should be on at time t when the evidence up to time t suggests that
there is at least a 30% probability that the room is inhabited, i.e. when

P(INHt = true|MOT0..t = . . . , MIC0..t = . . .) ≥ 0.3

In this formula, we assume that all MOT and MIC values from 0 to t are observed. When time
progresses to t + 1, we receive new observations MOTt+1 and MICt+1 and we can calculate the

Figure 7.1: The Markov chain as a Bayesian network

21



www.manaraa.com

conditional probability for INHt+1. Although logically all observations up to t + 1 are taken into
account for this probability, the actual calculation takes constant space and time, because it can
use the result for time t. This reveals the Markovian characteristic of the model: once you know
the probability distribution of INHt given some earlier observations, all information about earlier
states or observations is irrelevant for the future.

Once we have the model in place, we can also calculate other interesting conditional probabil-
ities. For example, we can calculate the probability for INHt given partial observations up to t.
Or we can use observations “from the future” for a better estimation. In case of turning the light
on, this is not so useful, but for the task of estimating the total time of presence, it may be.

Including the door lock sensor in this model is a little problematic. If we treat it like the other
sensors, we use the state of the door lock at all times t, and we can encode relations like if the state
is ‘locked’, the room is uninhabited by assigning a very low value to P(LOKt = true|INHt = true).
However, we cannot encode the relation at/after the moment the door is being unlocked, the room
is inhabited ; the independence assertions of the model make this impossible. We would have
to integrate the state of the door lock into the Markov chain, which makes the model more
complicated.

7.4 Comparison of the two models

Extending to multiple sensors

In the Markov model, it is relatively easy to add another sensor, as long as we can assume a direct
causal relationship between the observed process and the sensor value, and also an independence
of the other sensors (given the state of the process). We would only have to add the new sensor
matrix to the model parameters, and we’re done.

In the rule based model, it is even easier to add an event (just add the corresponding rule),
but the assumptions under which we can do this are quite strong: when the event happens all
earlier events should be irrelevant.

Dealing with missing values

Although we have defined it in terms of what happens when the sensors are completely functioning,
the Markov model already gives us an exact prescription of how to deal with missing values. For
example, in the case that we suddenly don’t receive any sensor data anymore, the estimated
probability distribution will slowly converge to its prior distribution (i.e. the distribution without
any observations).

The rule-based system is not prepared for missing data. When we defined the rules, we did
plan what should happen when no mot event is received, but this was under the assumption that
the sensor is functioning correctly.

Extending to non-binary sensors

Say we would use a motion detector with 256 values instead of two. In the Markov model,
we can replace the sensor matrix with a continuous probability distribution function. In the
rule based model, we would have to make up 256 rules that are quite similar to each other.
Moreover, even when the system detects almost no motion, the corresponding rule would make
the previously running rule irrelevant. We don’t want this, because “no motion” gives us relatively
few information (otherwise we would have let it trigger a rule in our binary system); so we’d better
stick with the running rule, which is based on earlier information.

Learning

If we haven’t estimated our parameters correctly, the theory around Markov models provides
methods for unsupervised (and I think also supervised) learning. The rule based model does not.

22



www.manaraa.com

Specification of the system

The specification of the rule-based system is easier to understand. Because of the simple rules
and priority scheme, the relation between the inputs of the system and the outputs is quite clear.
In the Markov model, one has to give a lot of numbers to completely specify the parameters, and
one even has to understand basic probability theory to decide that the door lock states should be
placed in the Markov chain.

Conclusion

From the two investigated models, Markov models are a more promising way to do abstrac-
tion/aggregation from sensor readings. One reason is that they try to model the underlying
process under observation, and not only the input-output relationship. If we want to extend the
model with new sensors or processes, we define the relationship between these and the existing
process; the other sensor inputs do not have to be taken into account.

A drawback of Markov models is that they take more expertise to specify. That said, they are
one of the simplest probabilistic models in existence.

23



www.manaraa.com

Chapter 8

Combining Markov chains

8.1 Introduction

We investigate a method of combining two Markov chains, with n and m states, into one chain
with n + m− 1 states. This combined chain is a more complete model (it recognizes more states)
of a situation that is partially modelled by the original chains; it has the property that it can be
projected back to either of the original chains by forgetting the distinction between the states that
are contributed by the other.

This method can be applied for combining two different sensor models into one without the
need of re-training a combined model.

8.2 Two Markov chains modelling the same situation

Suppose a situation is modelled by an unknown Markov chain of n + m− 1 states; we denote the
set of these states by S. The first known Markov chain A is able to observe n states, of which
the first n− 1 (denoted a1, a2, . . . an−1) correspond to states in S, and are considered to represent
valuable, positive information about the situation. The remaining state is denoted differently
(¬a) and represents the absence of this information. For example, each ai can represent a distinct
recognizable activity, and ¬a represents non-recognition.

The second known chain B recognizes m− 1 distinct positive states bj from S, which are also
all distinct from the ai states. In other words, the bj states are all substates of ¬a and the ai states
are substates of ¬b. There is one state left in the world: the ‘negative’ state ¬ab of the combined
chain, which is the intersection of ¬a and ¬b. In terms of probabilistic events, the situation we
define is as follows:

ai ∩ aj = ∅ ∀ij. i 6= j

a
def=

⋃

i

ai

bi ∩ bj = ∅ ∀ij. i 6= j

b
def=

⋃

j

bj

a ∩ b = ∅
ab

def= a ∪ b

(Note that this implies our previous statement that ¬ab = ¬a ∩ ¬b.)

24



www.manaraa.com

Since we are talking about Markov chains, we index all of these events with a time parameter
(denoted at

i etc.); the above definitions apply to all t. Now, the assumption is that the Markov
chains A and B are known. That is, for all i and j we know the transition probabilities:

P(at+1
j |at

i)

P(at+1
j |¬at)

P(¬at+1|at
i)

P(¬at+1|¬at)

P(bt+1
j |bt

i)

P(bt+1
j |¬bt)

P(¬bt+1|bt
i)

P(¬bt+1|¬bt)

Furthermore, we assume that the chains are stationary, so the above probabilities are equal for
all values of t. The goal is to derive the transition probabilities between all the n + m− 1 states
ai, bj and ¬ab. However, since these are not uniquely defined, we have focussed on the case where
the transition probabilities P(at+1

j |bt
i) are 0; in other words, the only way to get from an a state to

a b state or vice versa is through the ¬ab state. In this case, there is only one combined Markov
chain that can be projected to A and B.

Missing: proof (or else: assumption) that the combined model is actually a Markov chain, i.e.
the conditional independence.

8.3 Deriving the combined transition probabilities

To derive the transition probabilities for the combined chain, we pretend that we posess a series of
z direct observations of these transitions. These transitions are denoted x

i−→ y, where 1 ≤ i ≤ z
and x, y ∈ S. We define several ratios:

R(x → y) = #{x i−→ y|1 ≤ i ≤ z}/z

R(x → ) = #{x i−→ y|y ∈ S, 1 ≤ i ≤ z}/z

R( → y) = #{x i−→ y|x ∈ S, 1 ≤ i ≤ z}/z

Now, we assume that the transition probabilities of our two chains correspond with ratios of
observations:

25



www.manaraa.com

P(at+1
j |at

i) = R(ai → aj)/R(ai → )

P(¬at+1|at
i) =

R(ai → ¬ab) +
∑

j R(ai → bj)
R(ai → )

P(at+1
j |¬at) =

R(¬ab → aj) +
∑

i R(bi → aj)
R(¬ab → ) +

∑
i R(bi → )

P(¬at+1|¬at) =
R(¬ab → ¬ab) +

∑
i R(bi → ¬ab) +

∑
j R(¬ab → bj) +

∑
i<m

∑
j R(bi → bj)∑

i R(bi → ) + R(¬ab → )

P(bt+1
j |bt

i) = R(bi → bj)/R(bi → )

P(¬bt+1|bt
i) =

R(bi → ¬ab) +
∑

j R(bi → aj)
R(bi → )

P(bt+1
j |¬bt) =

R(¬ab → bj) +
∑

i R(ai → bj)
R(¬ab → ) +

∑
i R(ai → )

P(¬bt+1|¬bt) =
R(¬ab → ¬ab) +

∑
i R(ai → ¬ab) +

∑
j R(¬ab → aj) +

∑
i

∑
j R(ai → aj)∑

i R(ai → ) + R(¬ab → )

Also, we assume that the ratio of outgoing transitions R(x → ) of state x is equal to the
stationary probability of this state (in the Markov chain from which it originates). Furthermore,
this also equals the ratio of incoming transitions R( → x), because in our chain of observations
every outgoing transition from a state is preceded by an incoming transition to that state.

R(ai → ) = R( → ai) = SP(ai)
R(bj → ) = R( → bj) = SP(bj)

R(¬ab → ) = R( → ¬ab) = 1−
∑

i

SP(ai)−
∑

j

SP(bj)

The third assumption we take into account is the impossibility of getting from an ai state to
a bj state and vice versa:

R(ai → bj) = 0
R(bj → ai) = 0

Now we can construct a (n+m−1)×(n+m−1) transition ratio matrix M of which the element
Mxy represents R(x → y). The elements in the x row add up to R(x → ), and the elements in the
y column add up to R( → y). By the above assumptions, we can fill in the whole matrix except
the ¬ab row and column; these follow from the known row and column sums.

Then, by taking P(yt+1|xt) = R(x → y)/R(x → ), we have calculated the desired transition
probabilities of the combined Markov chain.

8.4 Adding a hidden layer

The presumed application of the above combination lies in hidden Markov models. This means
that the state chains A and B are connected to respective series of observations C and D. At
each point in time t there are p possible (mutually exclusive) C observations ct

k (1 ≤ k ≤ p) and
q possible D observations dt

l (1 ≤ l ≤ q). The HMMs define the observation probabilities

P(ct
k|at

i)

26



www.manaraa.com

P(ct
k|¬at)

P(dt
l |bt

j)

P(dt
l |¬bt)

and assert that these probabilities remain the same if other evidence is added, i.e. that the observed
variables are conditionally independent of all other variables when conditioned on the correspond-
ing state. When the two state chains are combined, these probabilities have to be redefined in
terms of the refined states. An obvious way to do this is by defining

P(ct
k|bj) = P(ct

k|¬ab) = P(ct
k|¬at)

P(dt
l |ai) = P(dt

l |¬ab) = P(dt
l |¬bt)

Further research will have to investigate if this assumption can be used in practice.

27



www.manaraa.com

Bibliography

[1] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Aurora: a new model
and architecture for data stream management. VLDB J., 12(2):120–139, 2003.

[2] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith
Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. STREAM: The Stan-
ford Data Stream Management System. 2006. To be published; available from
http://dbpubs.stanford.edu/pub/2004-20.

[3] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Language:
Semantic foundations and query execution. VLDB Journal, 15(2):121–142, June 2006.

[4] M.H. Böhlen. Toward a unifying view of point and interval temporal data model. In 11th
International Symposium on Temporal Representation and Reasoning (TIME 2004), 1-3 July
2004, Tatihou Island, Normandie, France, pages 3–4. IEEE Computer Society, 2004.

[5] Jan Carlson and Björn Lisper. An event detection algebra for reactive systems. In Gior-
gio C. Buttazzo, editor, EMSOFT 2004, September 27-29, 2004, Pisa, Italy, Fourth ACM
International Conference On Embedded Software, Proceedings, pages 147–154. ACM, 2004.

[6] J. Chomicki. Temporal query languages: A survey. In D.M. Gabbay and H.J. Ohlbach,
editors, Temporal Logic, First International Conference, ICTL ’94, Bonn, Germany, July
11-14, 1994, Proceedings, pages 506–534. Springer, 1994.

[7] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein, and Wei Hong.
Model-driven data acquisition in sensor networks. In VLDB 2004, pages 588–599, 2004.

[8] D. Gao, C.S. Jensen, R.T. Snodgrass, and M.D. Soo. Join operations in temporal databases.
VLDB J., 14(1):2–29, 2005.

[9] Lukasz Golab and M. Tamer Öszu. Issues in data stream management. SIGMOD Record,
32(2):5–14, 2003.

[10] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer Widom. A
pipelined framework for online cleaning of sensor data streams. In Ling Liu, Andreas Reuter,
Kyu-Young Whang, and Jianjun Zhang, editors, ICDE, page 140. IEEE Computer Society,
2006.

[11] Panu Korpipää, Miika Koskinen, Johannes Peltola, Satu-Marja Mäkelä, and Tapio Seppänen.
Bayesian approach to sensor-based context awareness. Personal Ubiquitous Computing,
7(2):113–124, 2003.

[12] Jürgen Krämer and Bernhard Seeger. A temporal foundation for continuous queries over data
streams. In Jayant R. Haritsa and T.M. Vijayaraman, editors, Advances in Data Management
2005, Proceedings of the Eleventh International Conference on Management of Data, January
6, 7, and 8, 2005, Goa, India, pages 70–82. Computer Society of India, 2005.

28



www.manaraa.com

[13] Abdullah Uz Tansel, James Clifford, Shashi K. Gadia, Sushil Jajodia, Arie Segev, and
Richard T. Snodgrass, editors. Temporal Databases: Theory, Design, and Implementation.
Benjamin/Cummings, 1993.

[14] Paolo Terenziani and Richard T. Snodgrass. Reconciling point-based and interval-based se-
mantics in temporal relational databases: A treatment of the telic/atelic distinction. IEEE
Trans. Knowl. Data Eng., 16(5):540–551, 2004.

29


